CMSC 313 Quiz 1

Name (please print clearly):
2 problems (front and back of this sheet).
No electronics allowed.
1.

We are given a value in signed magnitude form as input. The inputs are the magnitude of the value and the sign bit of the value.
Let A be the 2-bit magnitude:

- $\mathrm{A}_{1} \mathrm{~A}_{0}=00$ in binary: represents magnitude of 0 in decimal
- $A_{1} A_{0}=01$ in binary: represents magnitude of 1 in decimal
- $A_{1} A_{0}=10$ in binary: represents magnitude of 2 in decimal
- $A_{1} A_{0}=11$ in binary: represents magnitude of 3 in decimal

Let S be the sign bit.
For example, if $A=2$ and $S=1$, the value is -2 . If $A=1$ and $S=0$, the value is +1 .
Compute the equations for converting the signed magnitude value to 2 's complement value (supporting range from -3 to +3). In 2's complement form, there needs to be 3 bits for the output value. Let $Z=Z_{2} Z_{1} Z_{0}$ be the 3-bit 2's complement value output. Just the equations for each of the 3 output bits are sufficient; no need to draw the circuit diagram or a timing diagram. In other words, write Z_{2} as $f\left(A_{1}, A_{0}, S\right), Z_{2}$ as $g\left(A_{1}, A_{0}, S\right), Z_{2}$ as $h\left(A_{1}, A_{0}, S\right)$.

Hint: For an input value of $-2, Z=110(2$ in decimal is 010 in binary. 1 's complement of 2 is 101 . Adding 1 to it gives 110). For an input value of $+1, Z=001$ (no need to perform 2's complement for a positive number).
2nd Hint: In signed magnitude form, 0 can be represented as $+0(A=0$ and $S=0$) or as $-0(A=0$ and $S=1$).
2.

For the circuit given below, write the truth table. Give a brief explanation of how J and K inputs affect the output (i.e., how is $Q_{\text {new }}$ related to $Q_{\text {old }}$ when $\mathrm{JK}=00,01,10$ and 11?).

Hint: The inputs are $Q_{\text {old }}, \mathrm{J}, \mathrm{K}$ (8 rows in truth table). The output is $\mathrm{Q}_{\text {new }}$.

