Processor Pipelining

Kumaravel Jagasivamani April 10, 2024

Processor Overview

Register input requirements

- register D
 - D input latched just before clk rising edge

Positive-Edge Master-Slave D Flip-Flop Setup Time

- D input need to be stable before C rising edge \bullet
- Race condition between D and C
- Avoid uncertainty of output

Setup Time

Signals example

CIK RIP Inst. Memory Data DXA40D/ DXC804 Opcode RegSel Immediate X Dx 3 Ox I DXGID 0×843 RCX Ox 843 \bigcirc $RD \times$ X0x610 0 RAX 0×37 rbx 8×13

Data Memory

• • • •

Positive-Edge Master-Slave D Flip-Flop Timing Diagram with Propagation Delay

Pipelining

 Need to add registers in data path to reduce propagation delay in each clock cycle

Clock Frequency of Processor

- Trade-off between more complex operation performed in a clock cycle vs. faster clock frequency
- Example of a complex operation vs simple operation
 - Stages all combined together
 - Addition of 64 bits vs. Addition of 16 bits

Hazards/Dependency

- Read After Write
- Conditional Jump
- \bullet
 - Needed to run the clock at faster frequency

Especially true with more pipeline stages (x86 64 versions have more than 12)

