CMSC 313 HW4

Due 3/7/2024 11:59pm

Please submit the completed homework through Blackboard.

There are two 4-bit unsigned values A $(A_3A_2A_1A_0)$ and B $(B_3B_2B_1B_0)$ provided as input with a maximum value of 7. So A_3 and B_3 will be 0.

The objective of this homework is to determine the equations for two output bits ZF and SF. The ZF bit should be 1 if A==B. The SF bit should be 1 if B>A.

The homework can be broken down into the following steps:

- 1. Calculate the equations for determining the 1's complement of B. The inputs of this step are B₃B₂B₁B₀ and the outputs of this step are O₃O₂O₁O₀. Hint: O₀ only depends on B₀, O₁ only depends on B₁, etc. It is not necessary to do truth table.
- 2. Calculate the equations for determining -B. This is the 2's complement of B. The inputs of this step are O₃O₂O₁O₀ and the outputs of this step of N₃N₂N₁N₀. The 2's complement of a number is found by adding 1 to the 1's complement of the number. So we are adding O₃O₂O₁O₀ and 0001. Refer to the below table from the first lecture about adding 2 numbers. For the first bit, the input A in the table is O₀ and the input B in the table is 1. The sum is N₀. N₀ is 1 if O₀ is 0. The carry-out C₁ is 1 if O₀ is 1. For the second bit, the input A in the table is C₁. The sum is N₁. N₁ is 1 if O₁C₁' + O₁'C₁. C₂ is 1 if O₁C₁. Similarly, calculate the equations for N₂, C₃, N₃. The equations can be left as function of the inputs of this step (O₃O₂O₁O₀); it is not necessary to calculate them as function of B (B₃B₂B₁B₀).

A	В	Sum	Carry
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

3. Calculate A-B. The inputs for this step are A ($A_3A_2A_1A_0$) and -B ($N_3N_2N_1N_0$). The outputs for this step are S ($S_3S_2S_1S_0$). For the first bit, the input A is A_0 and the input B is B_0 . The sum S_0 is 1 if $A_0B_0' + A_0'B_0$ from the table above. The carry-out C₁ is 1 if A_0B_0 . For the second bit, however, there are 3 inputs: A₁, B₁, C₁. We have to use the full adder to calculate the sum and carry-out. Refer to the table that we studied in the first lecture below. In our case, the input A is A1, input B is B1 and carry-in input is C1. The sum S1 is 1 if A1 \oplus B1 \oplus C1 (i.e., A1 xor B1 xor C1: odd number of inputs are 1). The carry-out C2 is 1 if A1B1 + A1C1 + B1C1. Similarly calculate S2, C3, S3. The equations can be left as function of the inputs of this step: A and N.

A	В	Carry In	Sum	Carry Out
0	0	0	0	0
0	1	0	1	0
1	0	0	1	0
1	1	0	0	1
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	1	1	1

4. Calculate ZF output from S ($S_3S_2S_1S_0$). Write the equation for ZF in terms of the input S. 5. Calculate SF output from S ($S_3S_2S_1S_0$). Write the equation for SF in terms of the input S.