CMSC 313

Binary Arithmetic

Kumaravel Jagasivamani

Overview

* Number systems

 Why Binary? (Optional)

 Decimal representation

* Binary representation

* Conversion between decimal and binary
 Hexadecimal representation and conversion
* Binary addition

e 2’s complement

* Binary subtraction

* QOverflow

* Fractional numbers

* Floating point numbers

Number systems

* Base of number system: number of digits
 Decimal: 10

 Why decimal is common in everyday life?
* Binary: base 2

 Why is binary useful for computer systems?

Why Binary number system?
(Optional)

* Building block of processors is transistor

* Qutput voltage of transistor determines signal
(“variable”) value

* [ransistor is an analog device

* Qutput voltage can range from 0 V to supply
voltage

 Dependent on input voltage
* One option for storing information:

* Scale transistor voltage to desired range

* Problems with this approach?

Output
Voltage

Input
Voltage

Output

Voltage |
Saturation

Linear

Cut-off

Input
Voltage

Why Binary number system?
(Optional)

Output
Voltage

* Building block of processors is transistor

e Qutput voltage of transistor determines signal (“variable”) value Input
Voltage
* Transistor is an analog device /
e Qutput voltage can range from 0 V to supply voltage
 Dependent on input voltage
Output
* One option for storing information: Voltage

Saturation
e Scale transistor voltage to desired range

* Problems with this approach?
* More accurate to identify values with on/off metric Linear
e Digital vs. Analog
* Transistor turned off or saturated

* Group multiple transistors together to get desired range of output

Input
Voltage

Decimal value example

* Place value of nth digit position: 10n-1

* nth digit referred as 1s (109), 10s (107), 100s (102), ... digit
* Show derivation of 1s, 10s, 100s units’ digit

84610

Decimal to Binary value

* Place value of bit n (n starting from 0): 2n
 Show derivation of binary value

e 2710

e 3810

Bit

Place Value

W | D= O

o | B~ | DD | =

Binary to Decimal value

e Show derivation
e 11011>
e 1001102

Hexadecimal value

* Digits: 0-9,A,B,C,D, E, F
* Group 4 binary bits together
» Easier to convey information:
* Bisinstead of 10112
* 6316 Instead of 011000112
 Number of units reduced going from binary to hexadecimal

 Requires same number of bits to store information

Converting to/from hexadecimal

 Hexadecimal to binary:
* Ungrouping
* Binary to Hexadecimal:
* Grouping
* Hexadecimal to decimal:
* Place value of position n (n starting from 0): 16"
* Decimal to hexadecimal:

* Can also convert to binary first

Hexadecimal conversion examples

* Bie

10117

* 6316

* 011000112
* 2710

* 3810

* 30010

* 12C16

Binary Addition

* Adding 2 numbers:
e Sum is same bit position
* Carry goes to next bit position

 Multiplied by base of number system

 Examples:
« 0101 + 0110
e 1011 + 0111

Sum

Carry

Binary Addition

3 Inputs

e Sum = 1;

e Odd number of inputs are 1
 Carry Out = 1:

e 2 or more inputs are 1
 Examples:

* 0101 + 0110 + 1

1011 + 0111 + 1

<L

O
Q9

— — o o — — o () >

— o — o — o — () vy

A |la|la|lalolo|lo| o |58

- 1 o | =+~ 1O =+ | O] 0O O

2’s Complement of a number

* 1’'s complement of a number:
* Bit inversion
« Example of 5 (01012)
e 2’s complement of a number:
e Bit inversion + 1
e Example of 5 (01012)
e Example of 7 (01112)
* Most significant bit is 1
« Example of 9 (10012)
e 2’s complement value sign bit is hot 1

 Why?

2’s Complement of a number

1’s complement of a number:
e Bit inversion

« Example of 5 (01012)

2’s complement of a number:
* Bit inversion + 1
« Example of 5 (01012)
* Example of 7 (01112)

* Most significant bit is 1

Example of 9 (10012)
« 2’s complement value sign bit is not 1
 Why?
* Most significant bit needs to be 0 before 2’s complement

* Need to zero-extend binary value by 1 bit first

Sign bit: most significant bit
* 0: Positive

* 1. Negative

Binary subtraction

.+ 7-4
. 36-18
. 18- 36

Why 2’s complement?

Why not 1’s complement?

/-4 (1’s complement): result is 2 (1 less)
e 4 -7 (1's complement): result is -2 (1 more)
e 2°s complement
 Output matches expected value
e Same operation can be used to convert numbers
* Positive to Negative

* Negative to Positive

Overflow in 2’s complement

e 2’s complement 4-bit value
e Bit 3: sign bit

* [+ T:
* Both inputs are positive
* Qutput is negative

e -/ -7
* Both inputs are negative
* Qutput is positive

 How to avoid overflow?

 What is the range of allowed values?

Overflow in 2’s complement

4-bit 2’s complement value
e Bit 3: sign bit

* [+ T:
* Both inputs are positive
e Qutput is negative

e -/ -T:
* Both inputs are negative
e Qutput is positive

* Avoiding overflow:

* Sign-extend before addition

 Be aware of range

* 4-bit 2’'s complement value: -8 to +7

Fractional numbers

* Place value of digits after “decimal point”:
* 1st fractional bit: 2-
* 1st fractional bit: 2-2
* nth fractional bit: 2-n
* Converting from decimal to binary:
 Multiply by 2 and check whole number
* Converting from binary to decimal;

 Multiply by 2-n and add

Floating Point Numbers

Signed magnitude format (Not 1s/2s complement)

32-bit floating point number:
e 1-bit Sign bit
« 8-bit Exponent
e Bias of 127 (Add 127 to exponent value)
o 23-bit

Example

e -3.5:

Sign bit 1

Binary value: 11.1 =1.717 * 21

Exponent: 1 + 127 = 128 = 10000000

 Mantissa doesn’t include the “1.” part of 1.11 * 21 binary value

Final value for 32-bit floating point number = {1-bit sign, 8-bit exponent, 23-bit mantissa} = 1 10000000 110000...000 = 1100 0000 0110 0000 0000 0000 0000 00002
 Hexadecimal value (optional): CO60000016
» O (special case): 0000000016 and 8000000016

