
CMSC 313
I/O, Interrupts and Exceptions

Input/ Output (I/O) Architecture

• A system that facilitates communication between a host system and external
devices

• System usually include:
• Blocks of main memory dedicated to I/O functions
• Buses that move data around
• Control modules in host and external devices
• Interfaces to external components such as keyboards]
• Communication links between host and peripherals

3

This is a
model I/O
configuration.

Jorge Teixeira CMSC 313 Spring 2018

I/O Architecture

• I/O can be controlled in the following general ways
• Programmed I/O:

• Reserves a register for each device
• Each registers is continually polled for data arrived

• Interrupt driven I/O
• Memory Mapped I/O

• Shares memory address space between I/O and program memory
• Direct Memory Access

• Off loads I/O to a special chip that handles the specifics
• Channel IO

• Uses dedicated I/O Processors

Memory Mapped I/O

• I/O and main memory share address space
• Each device has its own reserved block of memory
• From the CPU point of view i/o access looks like memory access
• Typically can use the same instructions to move data in and out

of memory and i/o
• In smaller systems the low level details are offloaded to the i/o

controllers in the i/o devices

6

This is a DMA configuration.
CPU initializes data transfer
DMA handles the transfer
and lets CPU know when
done
Notice that the DMA and
the CPU share the bus.
The DMA runs at a higher
priority and steals memory
cycles from the CPU.

Direct Memory Access (DMA) I/O

Jorge Teixeira CMSC 313 Spring 2018

7

This is an idealized I/O subsystem that uses interrupts.
Each device connects its interrupt line to the interrupt controller.

The controller
signals the CPU
when any of
the interrupt
lines are
asserted.

Interrupt I/O

Jorge Teixeira CMSC 313 Spring 2018

Interrupts

Why Interrupts?

mov RDX, 0x378 ;Printer data port

mov RCX, 0 ;Loop counter

Label: mov RAX, [ABC+RCX] ;ABC is beginning of

; memory where
;characters are to be
printed from

OUT [RDX], RAX ;send character to printer

INC RCX
CMP RCX, 100000
JL Label

• Assembly program for
printing data

• Issues:
• Speed between processor and

printer
• Printer buffer size

Why Interrupts?

• OS needs to know when:
• The I/O device has completed an operation
• The I/O operation has encountered an error

• This can be done in two ways:
• Polling

• Information concerning the I/O device is kept in a status register
• OS checks that register periodically

• I/O Interrupt
• Asynchronous, externally stimulated event
• Does not prevent instruction completion
• I/O device interrupts processor when it needs attention

Polling

• Polling is simple to implement and processor is in
control

• Overhead from polling can consume a lot of CPU
time

Polling
MOV RDX, 0x379 ;Printer status port
MOV RCX, 0

Label:
IN AL, [DX] ;Ask printer if it is ready
CMP AL, 1 ; 1 means it is ready
JNE Label ;if not try again
MOV AL, [ABC+RCX]
DEC RDX ;Data port is 0x378
OUT [DX], AL ;send one byte
INC RCX
INC RDX ;change back to status port
CMP RCX, 100000
JL Label

External Interrupt

• In addition to programs, computers are also hardware driven
• When a device needs attention, it triggers an I/O interrupt
• An I/O interrupt is an externally stimulated event

• Asynchronous to instruction execution
• Does not prevent instructions from completing

• Processors typically have one or multiple interrupt pins for device
interface

External Interrupt

• Advantage: User program progress is only halted during actual
data transfer

• Disadvantage: Special hardware is required to support
interrupts:

• Hardware to cause an interrupt
• Detect the interrupt
• Save the processor state and handle the interrupt

x86 Interrupt Handling

• Intel has only one interrupt pin

• Relies on a programmable interrupt controller (PIC)

• Interrupts are handled in the following way:
• PIC is configured to receive interrupt requests

(IRQs)
• IRQs are numbered according to priority

• CPU is configured to receive IRQs and invoke
correct interrupt handler

• Interrupt handlers are described in the
Interrupt Descriptor Table (IDT)

• OS system kernel must provide Interrupt Service
Routines (ISRs) to handle interrupts

• OS needs to enable interrupts in PIC and CPU
https://alex.dzyoba.com/blog/os-interrupts/

Interrupt Service Routines

• IDT stores pointer to the ISRs
• ISR is code describing what to do in the event of an interrupt
• Basic ISR:

• Save the state of interrupted procedure
• Save previous data segment
• Reload data segment registers with kernel data descriptors
• Acknowledge interrupt to PIC
• Do the work
• Restore data segment
• Restore the state of interrupted procedure
• Enable interrupts
• Exit interrupt handler with iret

Interrupt Descriptor Table (IDT)

• Table that holds addresses and descriptions for Interrupt Service Routines (ISRs)
• Each entry is 8 bytes

• Table is pointed to by the IDT register
• Value loaded by the OS

Programmable Interrupt Controller (PIC)

• x86 has one interrupt pin, PIC is needed to handle multiple inputs

• PIC is essentially a multiplexor that saves CPU pins

• Can handle disabling particular interrupts and queuing interrupts
• Programming the PIC takes place at boot time using the OUT commands

• The number of the IRQ dictates its priority
• The PIC can be used in a two tier configuration

• One becomes the master and the other a slave

The ISA Architecture

• This architecture standardizes:
• Interrupt controller circuitry
• IRQ assignments
• I/O port assignments
• Connections available to expansion cards

• Dictates one master – one slave configuration

• Priority is assigned to IRQs by their number
with 0 having highest priority

Dr. Mohamed Younis CMCS 313

IRQs

IRQ (Master) Description
IRQ0 system timer

IRQ1 keyboard controller

IRQ2 slave IRQs

IRQ3 serial port (available)

IRQ4 serial port (available)

IRQ5 parallel port (sound card)

IRQ6 floppy disk controller

IRQ7 parallel port

IRQ (Slave) Description
IRQ8 real time clock

IRQ9 ACPI

IRQ10 open

IRQ11 open

IRQ12 mouse on ps2

IRQ13 CPU co-processor

IRQ14 ATA channel

IRQ15 secondary ATA

Software Interrupts

• Interrupts can also be triggered in software

• This is done using the INT instruction in code
• INT imm where imm indicates the interrupt number
• IRET returns from a software interrupt

• Before the syscall command in x86-64 system calls were done using INT
• INT 80H

